Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Trans R Soc Trop Med Hyg ; 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-20232330

ABSTRACT

The early termination of the Accelerating the Sustainable Control and Elimination of Neglected Tropical Diseases (Ascend) programme by the UK government in June 2021 was a bitter blow to countries in East and West Africa where no alternative source of funding existed. Here we assess the potential impact the cuts may have had if alternative funding had not been made available by new development partners and outline new strategies developed by affected countries to mitigate current and future disruptions to neglected tropical disease control programmes.

2.
Stat Methods Med Res ; 31(9): 1675-1685, 2022 09.
Article in English | MEDLINE | ID: covidwho-2236610

ABSTRACT

Since the beginning of the COVID-19 pandemic, the reproduction number [Formula: see text] has become a popular epidemiological metric used to communicate the state of the epidemic. At its most basic, [Formula: see text] is defined as the average number of secondary infections caused by one primary infected individual. [Formula: see text] seems convenient, because the epidemic is expanding if [Formula: see text] and contracting if [Formula: see text]. The magnitude of [Formula: see text] indicates by how much transmission needs to be reduced to control the epidemic. Using [Formula: see text] in a naïve way can cause new problems. The reasons for this are threefold: (1) There is not just one definition of [Formula: see text] but many, and the precise definition of [Formula: see text] affects both its estimated value and how it should be interpreted. (2) Even with a particular clearly defined [Formula: see text], there may be different statistical methods used to estimate its value, and the choice of method will affect the estimate. (3) The availability and type of data used to estimate [Formula: see text] vary, and it is not always clear what data should be included in the estimation. In this review, we discuss when [Formula: see text] is useful, when it may be of use but needs to be interpreted with care, and when it may be an inappropriate indicator of the progress of the epidemic. We also argue that careful definition of [Formula: see text], and the data and methods used to estimate it, can make [Formula: see text] a more useful metric for future management of the epidemic.


Subject(s)
COVID-19 , Basic Reproduction Number , COVID-19/epidemiology , Forecasting , Humans , Pandemics/prevention & control , Reproduction
3.
Interface Focus ; 11(6): 20210008, 2021 Dec 06.
Article in English | MEDLINE | ID: covidwho-1546109

ABSTRACT

Great progress has been made over the past 18 months in scientific understanding of the biology, epidemiology and pathogenesis of SARS-CoV-2. Extraordinary advances have been made in vaccine development and the execution of clinical trials of possible therapies. However, uncertainties remain, and this review assesses these in the context of virus transmission, epidemiology, control by social distancing measures and mass vaccination and the effect on all of these on emerging variants. We briefly review the current state of the global pandemic, focussing on what is, and what is not, well understood about the parameters that control viral transmission and make up the constituent parts of the basic reproductive number R 0. Major areas of uncertainty include factors predisposing to asymptomatic infection, the population fraction that is asymptomatic, the infectiousness of asymptomatic compared to symptomatic individuals, the contribution of viral transmission of such individuals and what variables influence this. The duration of immunity post infection and post vaccination is also currently unknown, as is the phenotypic consequences of continual viral evolution and the emergence of many viral variants not just in one location, but globally, given the high connectivity between populations in the modern world. The pattern of spread of new variants is also examined. We review what can be learnt from contact tracing, household studies and whole-genome sequencing, regarding where people acquire infection, and how households are seeded with infection since they constitute a major location for viral transmission. We conclude by discussing the challenges to attaining herd immunity, given the uncertainty in the duration of vaccine-mediated immunity, the threat of continued evolution of the virus as demonstrated by the emergence and rapid spread of the Delta variant, and the logistics of vaccine manufacturing and delivery to achieve universal coverage worldwide. Significantly more support from higher income countries (HIC) is required in low- and middle-income countries over the coming year to ensure the creation of community-wide protection by mass vaccination is a global target, not one just for HIC. Unvaccinated populations create opportunities for viral evolution since the net rate of evolution is directly proportional to the number of cases occurring per unit of time. The unit for assessing success in achieving herd immunity is not any individual country, but the world.

4.
Clin Infect Dis ; 72(8): 1463-1466, 2021 04 26.
Article in English | MEDLINE | ID: covidwho-1066275

ABSTRACT

Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases. Programs face a risk of resurgence, which will be fastest in high-transmission areas. Furthermore, of the mass drug administration diseases, schistosomiasis, STH, and trachoma are likely to encounter faster resurgence. The case-finding diseases (gambiense sleeping sickness and visceral leishmaniasis) are likely to have fewer cases being detected but may face an increasing underlying rate of new infections. However, once programs are able to resume, there are ways to mitigate the impact and accelerate progress towards the 2030 goals.


Subject(s)
COVID-19 , Tropical Medicine , Humans , Neglected Diseases/epidemiology , Pandemics , SARS-CoV-2
6.
Trans R Soc Trop Med Hyg ; 115(3): 253-260, 2021 03 06.
Article in English | MEDLINE | ID: covidwho-975331

ABSTRACT

BACKGROUND: On 1 April 2020, the WHO recommended an interruption of all activities for the control of neglected tropical diseases, including soil-transmitted helminths (STH), in response to the COVID-19 pandemic. This paper investigates the impact of this disruption on the progress towards the WHO 2030 target for STH. METHODS: We used two stochastic individual-based models to simulate the impact of missing one or more preventive chemotherapy (PC) rounds in different endemicity settings. We also investigated the extent to which this impact can be lessened by mitigation strategies, such as semiannual or community-wide PC. RESULTS: Both models show that without a mitigation strategy, control programmes will catch up by 2030, assuming that coverage is maintained. The catch-up time can be up to 4.5 y after the start of the interruption. Mitigation strategies may reduce this time by up to 2 y and increase the probability of achieving the 2030 target. CONCLUSIONS: Although a PC interruption will only temporarily impact the progress towards the WHO 2030 target, programmes are encouraged to restart as soon as possible to minimise the impact on morbidity. The implementation of suitable mitigation strategies can turn the interruption into an opportunity to accelerate progress towards reaching the target.


Subject(s)
Anthelmintics/therapeutic use , COVID-19/epidemiology , Helminthiasis/prevention & control , Helminthiasis/transmission , Soil/parasitology , Animals , Helminthiasis/epidemiology , Humans , Models, Theoretical , Neglected Diseases/epidemiology , Neglected Diseases/prevention & control , Pandemics , SARS-CoV-2 , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL